One very interesting fact I did not know before was that the most costly element of a lithium ion battery is not the lithium or rare earth metals that get so much press, but rather “hair thin sheets of plastic called separators.” It turns out Exxon has the world’s best separator technology, and the authors hope a prize can inspire others to match it. I wish they had broken out in one place the cost of a battery by its different components, since without that it’s tough to infer more.
All the same, the question of raw material availability looms. The authors cite the well-known predominance of Bolivia’s lithium reserves and China’s rare earth metals reserves and point out known reserves elsewhere in the world. They also cite recycling and extending battery life as mitigating strategies for the West. But while they squarely name this challenge and address it head-on, I come away unconvinced that an electric car revolution wouldn’t be trading strategic energy dependency on one commodity (oil) for dependency on a host of others.
Ultimately, the authors also have the right, open attitude toward technology and avoid the “picking winners” trap:
As the backdrop of all of the above activities, it is important to remain open-minded about other battery chemistries and realize that advanced battery technology is only at the beginning of its upward trajectory. While significant progress is made toward mass production of advanced LiIon batteries, it would be imprudent for the government to crown one battery chemistry “the winner,” particularly in light of its questionable track record of picking R&D winners. With all their potential, the race is not over.Yet despite that attitude and the optimism it engenders, in the end they do not illuminate a line of sight to the day that PHEVs will be cost-competitive with normal cars. And without that, their OFS story is basically a biofuels (or other hydrocarbon-to-liquids fuels) story... and is that really that revolutionary?
No comments:
Post a Comment